Search results for "Adaptor Protein Complex mu Subunits"

showing 3 items of 3 documents

Sorting signals for PIN1 trafficking and localization

2016

PIN-FORMED (PIN) family proteins direct polar auxin transport based on their asymmetric (polar) localization at the plasma membrane. In the case of PIN1, it mainly localizes to the basal (rootward) plasma membrane domain of stele cells in root meristems. Vesicular trafficking events, such as clathrin-dependent PIN1 endocytosis and polar recycling, are probably the main determinants for PIN1 polar localization. However, very little is known about the signals which may be involved in binding the μ-adaptin subunit of clathrin adaptor complexes (APs) for sorting of PIN1 within clathrin-coated vesicles, which can determine its trafficking and localization. We have performed a systematic mutagene…

0301 basic medicineArabidopsis ProteinsVesicleClathrin adaptor complexCell MembraneMembrane Transport ProteinsPlant ScienceBiologyEndocytosisClathrinEndocytosisAdaptor Protein Complex mu SubunitsArticle AddendumCell biologyAdaptor Proteins Vesicular Transport03 medical and health sciences030104 developmental biologybiology.proteinClathrin adaptor proteinsPolar auxin transportTyrosineSecretory pathwayPlant Signaling & Behavior
researchProduct

Sorting Motifs Involved in the Trafficking and Localization of the PIN1 Auxin Efflux Carrier

2016

In contrast with the wealth of recent reports about the function of μ-adaptins and clathrin adaptor protein (AP) complexes, there is very little information about the motifs that determine the sorting of membrane proteins within clathrin-coated vesicles in plants. Here, we investigated putative sorting signals in the large cytosolic loop of the Arabidopsis (Arabidopsis thaliana) PIN-FORMED1 (PIN1) auxin transporter, which are involved in binding μ-adaptins and thus in PIN1 trafficking and localization. We found that Phe-165 and Tyr-280, Tyr-328, and Tyr-394 are involved in the binding of different μ-adaptins in vitro. However, only Phe-165, which binds μA(μ2)- and μD(μ3)-adaptin, was found …

0106 biological sciences0301 basic medicinePhysiologyPhenylalanineGreen Fluorescent ProteinsMutantArabidopsisPlant ScienceProtein Sorting SignalsEndoplasmic ReticulumEndocytosis01 natural sciencesClathrin03 medical and health sciencesCytosolGeneticsGuanine Nucleotide Exchange FactorsSecretory pathwaybiologyArabidopsis ProteinsEndoplasmic reticulumMembrane Transport ProteinsSignal transducing adaptor proteinArticlesPlants Genetically ModifiedClathrinEndocytosisAdaptor Protein Complex mu SubunitsTransport proteinCell biologyProtein Transport030104 developmental biologyProtein Sorting SignalsMutationbiology.protein010606 plant biology & botanyPlant Physiology
researchProduct

Trafficking of the human transferrin receptor in plant cells: effects of tyrphostin A23 and brefeldin A.

2006

Plant cells possess much of the molecular machinery necessary for receptor-mediated endocytosis (RME), but this process still awaits detailed characterization. In order to identify a reliable and well-characterized marker to investigate RME in plant cells, we have expressed the human transferrin receptor (hTfR) in Arabidopsis protoplasts. We have found that hTfR is mainly found in endosomal (Ara7- and FM4-64-positive) compartments, but also at the plasma membrane, where it mediates binding and internalization of its natural ligand transferrin (Tfn). Cell surface expression of hTfR increases upon treatment with tyrphostin A23, which inhibits the interaction between the YTRF endocytosis signa…

Endosomemedia_common.quotation_subjectArabidopsisTransferrin receptorPlant ScienceBiologyEndocytosischemistry.chemical_compoundReceptors TransferrinGeneticsHumansEnzyme InhibitorsInternalizationmedia_commonchemistry.chemical_classificationProtein Synthesis InhibitorsBrefeldin AProtoplastsCell BiologyReceptor-mediated endocytosisBrefeldin ATyrphostinsPlants Genetically ModifiedCell biologyAdaptor Protein Complex mu SubunitsCytosolProtein TransportchemistryGene Expression RegulationTransferrinThe Plant journal : for cell and molecular biology
researchProduct